Viljami Kuosmanen

PRODUCT
ENGINEER
CHECKLIST

How to think like a product engineer

version 2025-08 productengineer.org

https://productengineer.org/

Table of Contents

Product Engineer Manifesto

About the Author

What is a Product Engineer?

1. Understand

11 Who's the user?

1.2 Who's the customer?
1.3 What's the market?
1.4 Ask Why

1.5 What do we already know?
2. Craft
21 Am | proud of what I'm building?

2.2 Does the product feel good?
2.3 How do | get there faster?
2.4 Teamwork

3. Growth
3.1 How do | measure the success of my work?
3.2 How do | maximise the impact of my work?
3.3 How do | stay ahead of the curve?

4. Product Vision
41 What's our North Star?

4.2 How does my work impact the design?

4.3 What's our ambition level?

01
02
03

08
09
09
10
10

1
11
12
13

14
14
15

16
16
17

Table of Contents

The 3 Most Important Questions

Dealing_ With Pushback to Product Engineering,

Conclusion

Annex A: Letter to PMs

Annex B: Letter to Designers

18

23

25

27

Product Engineer Manifesto

It is our responsibility as builders to first seek to understand the
problem, before diving into solutions.

We concern ourselves with design, technical, and business
domains; taking an active part in each to shape the product and
empower others to do the same.

Our craft combines Product Thinking with great technical
execution.

We take great professional pride in the products we ship and
refuse to limit ourselves to technical-only roles in our teams.

The Product Engineer Mindset
In our work as Product Engineers, we have come to value:

e Continuous delivery of working software over promises
and estimates

¢ Asking why to deeply understand the customer problem
before diving into code

¢ Customer collaboration and feedback over tickets and
second-hand knowledge

¢ Teamwork and communication over picking up tasks and
working in isolation

¢ Testing the product ourselves over relying on others
(especially our users) to find issues

¢ Domain knowledge and ownership over outsourcing
strategic thinking to someone else

01

About the Author

Hi there! I'm Viljami — a software
engineer who got tired of being boxed
into technical roles and decided to
write this checklist to help other
engineers step up and start taking
more ownership and pride in the
products they ship.

Viljami
Kuosmanen

Product Engineer

In my work as a Founder, Lead Developer and most
recently as Head of Engineering leading teams of
ambitious senior engineers building multi-million-$ ARR
SaaS for the energy industry, along with years of building
and maintaining open source products used and
contributed to by many great teams and companies, I've
learned a set of strategies and questions to help engineers
combine technical execution with product thinking in
order to build products we can be proud to display on our
portfolios.

For those interested, this is my product porfolio:

- epilot.cloud (2021-present)

- openapistack.co (2018-present)
- kamerastore.com (2015-2022)

- seravo.com (2013-2017)

02

https://epilot.cloud/
https://openapistack.co/
https://kamerastore.com/
https://seravo.com/

What is a Product Engineer?

Not Just Coders, but Builders

Picture this: engineers who don't just speak in code but in
product design and customer problems.

Product engineers are a special breed of engineers that don't
just see themselves as coders or developers but as builders who
deeply care about the products they build.

They're driven by a professional pride and desire to build great
products, going beyond the traditional developer role to
become genuine drivers who want to put their names behind
great products they played a key role in shaping and delivering.

The Counter to Hyperspecialisation

The tech world has seen for a long time a trend towards
hyperspecialisation, with engineering roles becoming
increasingly narrow and technical.

We have frontend engineers, backend engineers, iOS engineers,
DevOps engineers. We have developers defining their careers
with a specific language: JavaScript engineers, Swift engineers,
C# engineers, Python engineers. We even have developers that
seemingly dedicate their entire careers to a single framework or
tool: React engineers, .NET engineers, Unity engineers, Ruby on
Rails engineers.

Feels like it's only a matter of time until we see job postings
seeking for-loop engineers and variable naming engineers.

03

Jokes aside, specialisation isn't totally without its merits as it has
allowed engineers to build deep expertise in specific
technologies, a key component in building quality software.

However, it also lead to silos where collaboration and broader
product understanding became a nice-to-have and often not
even an expectation or focus for engineering roles.

Product engineers stand as a counter-movement to this trend.
They embody a holistic approach to engineering, where
understanding the entire product and context around it is just
as important as the technical skills required to build it. This
broad perspective enables them to bridge gaps between
different technical domains and ensure that the product serves
its customers effectively.

Al: The New Playground

The rise of artificial intelligence (Al) tools in software
development is rapidly setting new expectations for engineers.
With Al tools becoming more sophisticated and capable,
engineers are now expected to leverage these tools to enhance
their work, not just in terms of speed and efficiency but also in
terms of broadening their area of responsibilities.

Engineers in a post-ChatGPT and Copilot world are now
expected to work in more languages, leverage more tools and
libraries, and simply deliver more, taking control of a broader
range of technologies and disciplines in their daily work.

04

It's probably not a great time to be the platform engineer whose
full-time job is to write scripts and build Cl pipelines, or the
specialist database engineer who configures databases and
optimizes SQL queries, when an LLM tool like ChatGPT can
guide any decently smart engineer to do this work without
requring deep expertise.

For product engineers, Al tools unlock a higher level of
abstraction. With Al making more specialised tasks accessible,
engineers can focus their work on creative problem-solving,
ideation, and exploring new ways to meet customer needs.

This new level of abstraction allows product engineers to
concentrate on product strategy, user experience, and overall
system architecture without being bogged down by the
intricacies of individual technologies.

The incorporation of Al into software development encourages a
broader perspective, where the choice of technology becomes a
means to an end, rather than an end in itself.

While Al didn't create the product engineer role — examples
have been around for much longer — Al has made becoming a
true product engineer much more accessible as a career path
for software engineers.

Combining Product Thinking and Technical Execution

Product thinking involves understanding the user's needs, the
market demands, and the business goals that drive a product's
development. It's about seeing beyond the immediate task to
grasp how each piece fits into the broader puzzle of the user
experience.

05

Product engineers don't just build features from specifications.
They contribute to the design and roadmap of the product
through a robust understanding of the customer's needs and
business strategy.

This approach requires a balance of skills: the ability to dive deep
into coding and system architecture, while also keeping an eye
on the product roadmap and customer feedback.

This checklist contains a set of questions to help engineers hone
their skKills in exactly these areas. They're designed to stop you in
your tracks before jumping into the solution, and make sure
you've understood the problem deeply.

| hope this checklist is helpful to those who wish to level up their

career to build great products, or break the stereotypes of
engineers being thought of as only narrow technologists.

06

Product Engineer Checklist

07

1. Understand

1.1 Who's the user?

As a product engineer, your #1 goal is to create happy users.
These are your fans! Always start with the user!

Your user is the person that primarily interacts with your product
and whose experience your work will directly impact.

You may have multiple user groups. People who may have
varying reasons to use your product or might interact with it in
different ways from different angles, maybe on different kinds of
devices.

You should understand how to help these users. What drives
them to use your product? What delights them? What are their
pains?

As a product engineer you should demand and support your
team find answers to these questions before jumping into
writing code.

1.2 Who's the customer?

Yes, this is a different question to "Who's the user?". The
customer is whoever pays for your product, not always who uses
it.

You should know what makes your product valuable to your
customers to make better decisions on what to invest your time.

08

Hint: If you're in B2B the answer always has to do with helping
your customers save money or make more money.
Understanding your customers' core business is key to
understanding why they would pay for your product.

Most importantly, you want to make whoever is paying for your
product look good. After all, they're the ones taking a risk by
picking your product. You ALWAYS want to reward them for
that.

1.3 What's the market?

Zooming out, let's take a look at the wider market landscape.
Who are the potential customers we haven't captured yet? Why
would a customer pick a competitor’'s product vs. mine? Are we
leaving opportunities on the table?

What can | learn from similar products in the market? What are
our USPs? How do | create a competitive advantage against
competition?

Are there rules to the market? Are there regulations or industry
standards | need to know about? Does my product have to look
or feel a certain way to be taken seriously?

Knowing the market and regularly bechmarking yourself
against other players helps become aware of your strengths and
weaknesses and give ideas for where to invest strategically in
your own product.

09

1.4 Ask Why

This is a bit of a product thinking cliche but still holds true:
always pays to ask “why" a few times to uncover root causes of
problems and underlying motivations.

Asking why can be helpful in almost any situation to build
understanding in your team. Some examples:

¢ Why should we invest into building this feature?
e Why are customers asking for this feature?

Why is this a pain for our users?

Why do users give us that feedback?

Why now?

1.5 What do we already know?

It's smart to build on what's already known rather than always
starting from scratch.

Always leverage the existing knowledge and experience of peers
and leaders: founders, product leadership, designers, other
product engineers, etc.

Examine the status quo to see how a problem is currently
solved. Look at ideas, feedback, metrics, KPIs already collected in
the past.

Do we have users already doing something like this? What are
their existing workflows? How could we improve their
experience?

Am | duplicating or potentially deprecating some functionality
that already exists? Could this be achieved by extending or
leveraging existing features? How are competitors solving this?

10

2. Craft

2.1 Am | proud of what I'm building?

Your track record as a product engineer is the products and
features you've delivered. Your last feature represents your
professional competence level. No excuses.

Ask yourself what quality standard do | want to set for the work |
put out there?

Can | be proud of the product | worked on? Is my work well
tested and polished? Did | cut corners where | shouldn't have?

As a highly paid professional engineer your craft is to produce
high quality software which includes avoiding the creation of
technical debt. Never ask for permission to improve quality!

What makes a great product engineer stand out from the
average software engineer is an intense sense of professional
pride in their work and product.

2.2 Does the product feel good?

This may be a slightly controversial take, but | believe a
surprisingly large part of building great products is about
developing a good taste for it.

Simply knowing the difference between great vs. average and
not settling for just "ok” helps tremendously in making good
decisions as a product engineer.

Does the product feel smooth and consistent? Is it intuitive,
simple, and familiar to the user? Or does it feel cheap and janky?

11

Note that this doesn’t only concern the visual aspects of your
product. Just slapping a fancy Ul design on a shaky foundation
doesn't create a great experience.

Simple. Elegant. Clean. This is what we're after as product
engineers.

2.3 How do | get there faster?

The pace of innovation especially in software is so rapid that in
order to be competitive you must deliver fast, early and often.

Too slow and your customers will lose trust in you while your
competitors overtake you.

What many get wrong about agile and building products is
optimizing for predictability with estimates and roadmaps.
Rather, what you really should care about is visible and
continuous progress towards product goals.

The goal of estimates should not be to try to be as accurate as
possible but rather to set ambitious and yet achievable goals for
yourself.

The question is not how long you think it will take to build, but
how long should it take? What's an acceptable amount of time

and effort | should invest on this?

What's the rollout strategy? How do | get this into customers'
hands as soon as possible? What's the MVP?

12

2.4 Teamwork

Building products is a team sport.

You are absolutely not expected to work alone and do
everything yourself from writing code to doing user research.

Am | effectively communicating with my team? Am | leveraging
my team members' strengths? Are we celebrating our

successes?

Great teamwork results in great products. Invest in your team,
and you will see the dividends in your product's success.

13

3. Growth

3.1 How do | measure the success of my work?

Our work as product engineers is not just about building and
shipping feature after feature.

We make educated guesses about the most valuable thing to
work on, so we should also be able to answer the question:
What's the impact of my work?

How many customers did we talk to to validate our progress?
Are they coming back? How much money does it generate?

Use analytics tools and user feedback to help you understand
what's working and what's not. Talk to real users to get
gualitative insights about the product.

Most importantly, make sure to share your outcomes openly and
transparently. What did | ship in the last few months? What
were the results?

3.2 How do | maximise the impact of my work?

The most important question you should regularly ask yourself
is:am | focused on the right thing?

Being a good engineer is finding the biggest bottlenecks that

hold us back and figuring out how to solve them. You should
prioritise your efforts ruthlessly.

14

Actively coommunicate what you're working on and why, so that
others can help you and keep you accountable. Demo progress
frequently and seek feedback.

Don't fear taking risks. Being bold and taking the lead on
delivering new and innovative features you believe in can lead to
big wins.

Ask yourself: How can | align my work with our company goals?
How does my work directly benefit our users? Is there a way |
can communicate my work better to others to get better
feedback?

3.3 How do | stay ahead of the curve?

Stay updated on market trends. Attend conferences, read up,
follow experts.

Make sure to research and benchmark competitor products, or
other similar products whenever possible.

Hold frequent retrospectives and brainstorming sessions.
Experiment with new ideas. Encourage creativity in your team.

What are the latest trends in my industry? How can | encourage

innovation within my team? Are we taking enough time to learn
from our successes & failures?

15

4. Product Vision

4.1 What's our North Star?

To align your work in the context of the broader product vision,
you should deeply care about what others in the company are
doing and saying, making sure you fully understand and are
committed to the overall product strategy. Asking “why” is
crucial here.

What are our current product goals? What's our growth
strategy? Where do we want to be in the next 2-5 years?

When presenting your work it always helps to put it in the
context of how it pushes us forward in the big picture. How does
my work help us reach our North Star?

4.2 How does my work impact the design of the product?

Understanding the existing software’s design and architecture
decisions helps make sure that your work fits well within the
larger product design. Always consider how your work
influences and is influenced by other components.

When adding new functionality, you should ask:

e Could this be achieved by extending or leveraging existing
core features?

e Does my design follow a consistent style to the rest of the
product?

e Am | adding complexity or reducing it?

Simplicity is worth fighting for.

16

4.3 What's the ambition level?

It's a good idea to define the ambition level when setting off to
build something new. Are you aiming for an incremental
improvement or a revolutionary new functionality?

Is this feature a USP or a basic expectation? What's the ROl on
building this feature? Does it make sense to spend the effort
building this ourselves, or could we use an off the shelf library or
service?

Your time is extremely valuable. Think like an owner: Would you

invest your salary to build the feature, or rather on something
else?

17

The 3 most important questions

If you've made it this far, kudos to you! But let's be honest. No
engineer is going to run through a 15-point checklist to make a
product decision. Just seeing the list above can feel
overwhelming, especially coming from a mostly technical role.

If we expect engineers to actually start doing this stuff, the core
idea of product engineering needs to be simple and easy to
remember.

The good news is, to think like a product engineer, it's already
enough to start with just three simple questions:

e What's the problem?
¢ For who?

e Why is this important?

Let's dive a bit deeper into each one.
1. What's the problem?

Stop coding for a second. Do you really know what you're trying
to solve? Not the ticket description in Jira, but the real-world
issue. If you can't articulate the problem in simple plain English,
you have no business writing a single line of code.

18

2. For who?

Identify your user and customer. Sometimes they're the same
person; other times, they're not. Understanding who will use
your product (and who will pay for it) is crucial. It shapes the way
you approach the solution and helps you tailor the experience to
meet their needs.

3. Why is this important?

As engineers there's never a shortage of things we could be
improving or adding. If solving the problem doesn't make a
meaningful difference, why are you wasting your valuable time?
We're not here to build features that nobody uses or cares
about. Connect your work to something that actually matters
and helps build your track record.

By anchoring your work in these three questions, you
immediately move from code monkey to a high value product-
minded engineer. Still a rare breed. You're not just
implementing features someone else decided to build; you're
elevating yourself to a position to influence product decisions
and build smarter.

19

Dealing With Pushback to Product
Engineering

I'm sometimes confronted by disappointed product engineers,
frustrated with non-engineer colleagues who didn't seem to buy
into the idea of involving engineers in the product process from
the start.

An all too familiar and frustrating situation for many of us.

You think of yourself as a proud product engineer wanting to
solve meaningful problems but then get slapped with a detailed
feature specification designed by a group of non-developers
without your input. Now they expect you to go deliver their
vision.

This is very much the reality in most product teams. Calling
yourself a product engineer doesn't automatically mean your
voice will be welcomed. And that's totally okay.

The ideal vs. the Reality

So far I've painted the ideal: engineers who understand
customer needs, question roadmaps, challenge designs, and
contribute beyond code. But the reality is often much messier.

Some PMs and designers love working closely with engineers.
Others are still adjusting to the idea. And that's fair. The product
engineer mindset definitely isn't the norm.

Let's not forget, PMs and designers are often under pressure too.
It's only natural they sometimes default to the most familiar and
streamlined path. One that doesn't always include engineers in
the early stages.

20

And let's be honest. Sometimes engineers haven't yet built the
trust or skills to contribute meaningfully.

The Friction Is Normal

The moment you step outside your lane, you shouldn'’t be
surprised when the reaction isn't overwhelmingly supportive.

You will face skepticism.
You might be seen as overstepping.

You will encounter:

e Requests to give estimates for someone else's designs

e Roadmaps shared as top-down mandates

e Ul prototypes handed over "ready for dev", expecting pixel-
perfect implementation

e Pushback from asking too many questions

This is the price of wanting to do more than just execute. And if
we're honest, many of us haven't always shown up in these
conversations in a way that earns trust.

Is this a culture problem? Not necessarily. Most teams don't have
a rule against engineers joining product discussions. It's just not
the default. It's less about policy and more about patterns.

Changing those patterns takes trust, initiative, and persistence.

At the end of the day, it's the product engineer’s job to show
that product engineering actually works.

21

Earn the Trust

Calling yourself a product engineer isn't a free pass. No one
hands you a seat at the product table just because you want it.
You must earn it. Show, don't tell.

¢ Do the homework. Know the names of your customers. Know
the business domain.

e Talk to your colleagues, not just other devs. Find
opportunities to interact with customers.

e Ask helpful questions that sharpen the team's product
thinking.

¢ Dive into data. Gather insights. Find new metrics and ways to
collect useful signals.

¢ Bring value to the table. Demonstrate you understand the
customer problem by making thoughtful proposals that
move the product forward.

You need to show up in demos, RFCs, testing sessions, and
reviews. Not just in code commits.

22

Conclusion - Why bother?

Because it's worth it.

We do this for our own professional pride. To put great products
into the hands of happy customers. And into our portfolios.

We don't challenge product decisions because we want to take
over the PM's job or undermine the work of our design / UX
teammates. We do it because we care about impact. Because
we want our effort to count.

Because it hurts to pour weeks of your life into something that

doesn't work out, and you weren't given a real chance to help
make it a success.

Leverage Your Team—They're There for a Reason

The biggest mistake aspiring product engineers make is
thinking they have to find all the answers themselves.

Most of us are lucky to work in a multidisciplinary team with
non-engineer team members like UX researchers, designers,
PMs and business stakeholders whose job is to help answer

these questions.

By leaning on your team, you will not only find better answers
but also foster a more collaborative and innovative environment.

Product engineering is a team sport.

23

Our Leverage

And here's something to remember: We, as engineers, hold real
leverage. We are the only ones who can actually turn product
decisions into reality. No idea ships without us.

So while we may not always get a say by default, we do get a say
in how we show up and how deeply we choose to care.

Use that leverage wisely. And proudly.

Start Asking the Right Questions Today

So, the next time you find yourself in a new project or
assignment, pause for a moment before diving into code. Ask
yourself:

¢ What's the problem?
e Forwho?
e Why is this important?

Write down your answers. Reach out to your team for help. This
simple practice can transform your approach to work, leading to

more impactful decisions and a greater sense of ownership.

Thank you for taking pride in your work as a Product Engineer,
making software better for everyone!

24

Dear Product Manager,

Before anything else: thank you.

The work you do, aligning stakeholders, maintaining a
relationship with users, finding new opportunities and
communicating them is rarely easy and often invisible. It's the
kind of effort that can be underestimated from the outside. But
we see it. And we respect it.

As product engineers, we're sharing the manifesto not as a
critigue of your role, but as a challenge to ourselves. We want to
step up. Not just write the code, but understand the customer.
Not just deliver features, but take responsibility for outcomes.

Still, we know that can come across the wrong way. The things
we post: the manifesto, the bold claims, the challenges to not
blindly follow roadmaps created by PMs can read like they're
aimed at you. But the truth is, we're mostly talking to ourselves.
Encouraging each other to break old habits and move beyond
being passive implementers.

We want to be useful upstream. We want to sharpen the
problem definition. Bring context from past experiments.
Understand your goals and constraints. Help shape what we're
building before it's locked in. Not because we think we know
better—but because we care deeply about getting it right.

25

However, one of the realities we often see is that having a
"manager" title can sometimes create an implicit hierarchy
within the team. This can unintentionally lead to a dynamic
where engineers are seen primarily as executors of
specifications, rather than as creative contributors to the
product vision.

The manifesto isn't about diminishing the importance of
product management or suggesting that engineers should take
over your role. Rather, it's about fostering a space where
engineers can engage more deeply with the product vision,
contribute ideas, and help bring even more innovative solutions
to life. We see this as a way to strengthen our collaboration, not
replace it.

So don't let us off the hook. Treat us as peers. Hold us
accountable when we overstep or get lost in abstraction. And
when we ask questions “What's the problem? For who? Why
now?" see it for what it is: a desire to think with you, not just

follow.

Product engineering is a team sport. We're here to play it with
you.

Sincerely,

Your engineer colleague

26

Dear Designer,

| hope this letter finds you well. | wanted to take a moment to
share some thoughts about how we work together, and more
importantly, to express my deep appreciation for the incredible
work you do.

Your work is often the soul of the product. The empathy you
bring, the deep research and great taste you bring add up to a
joyful experience. That's what makes great products feel great.
As engineers, we aspire to that level of care.

As product engineers, we often find ourselves in awe of the
magic that designers create. Your ability to envision user
experiences, understand the needs of our customers, and
translate them into beautiful, intuitive designs is truly inspiring.
For many of us, designers are like the north star: something to
strive towards in terms of creativity, great taste and user
empathy.

You might see talk of “product engineering” and wonder if we're
trying to step on your toes. And if we're being honest,
sometimes our content can come across that way. Manifestos,
checklists, strong opinions—written as if we have it all figured
out.

But the truth is: it's mostly written for ourselves. It's a reminder

to stop coding and start thinking. To look beyond the Jira ticket
and ask: Does this feel right? Is it intuitive? Would we be proud
to ship this?

27

We want to be closer to design, not to replace it. Contribute our
experience and expertise to it. Because we believe great
products happen when engineers develop taste. Not just coding
skills.

We're learning. Trying to notice when something feels off. Trying
to ask better questions. Trying to be more than just the dev who
picks up tickets and needs to be told what to build.

So don't lower your standards for us. Challenge us when we miss
the mark. Treat us as partners. Help us grow into engineers who

can build with you. Not after you.

Because in the end, product engineering is a team sport. And we
want to be teammates you can count on.

Sincerely,

Your engineer colleague

28

